Transcription elongation factor S-II confers yeast resistance to 6-azauracil by enhancing expression of the SSM1 gene.

نویسندگان

  • M Shimoaraiso
  • T Nakanishi
  • T Kubo
  • S Natori
چکیده

Loss of function of S-II makes yeast sensitive to 6-azauracil. Here, we identified a multi-copy suppressor gene of this phenotype, termed SSM1 (suppressor of 6-azauracil sensitivity of the S-II null mutant 1), that encodes a novel protein consisting of 280 amino acid residues. Although both the SSM1 null mutant and the S-II/SSM1 double null mutant were viable under normal growth conditions, they resembled the S-II null mutant in being sensitive to 6-azauracil. Expression of the SSM1 gene was found to be repressed in the S-II null mutant but was restored by overexpression of chimeric S-II molecules that were able to stimulate transcription elongation by RNA polymerase II in vitro. Furthermore, we identified two transcription arrest sites within the transcription unit of the SSM1 gene in vitro that could be relieved by S-II. These results indicate that S-II confers yeast resistance to 6-azauracil by stimulating transcription elongation of the SSM1 gene.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthetic lethal interactions suggest a role for the Saccharomyces cerevisiae Rtf1 protein in transcription elongation.

Strong evidence indicates that transcription elongation by RNA polymerase II (pol II) is a highly regulated process. Here we present genetic results that indicate a role for the Saccharomyces cerevisiae Rtf1 protein in transcription elongation. A screen for synthetic lethal mutations was carried out with an rtf1 deletion mutation to identify factors that interact with Rtf1 or regulate the same ...

متن کامل

Saccharomyces cerevisiae transcription elongation mutants are defective in PUR5 induction in response to nucleotide depletion.

IMP dehydrogenase (IMPDH) is the rate-limiting enzyme in the de novo synthesis of guanine nucleotides. It is a target of therapeutically useful drugs and is implicated in the regulation of cell growth rate. In the yeast Saccharomyces cerevisiae, mutations in components of the RNA polymerase II (Pol II) transcription elongation machinery confer increased sensitivity to a drug that inhibits IMPDH...

متن کامل

Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II.

Set2 methylates Lys36 of histone H3. We show here that yeast Set2 copurifies with RNA polymerase II (RNAPII). Chromatin immunoprecipitation analyses demonstrated that Set2 and histone H3 Lys36 methylation are associated with the coding regions of several genes that were tested and correlate with active transcription. Both depend, as well, on the Paf1 elongation factor complex. The C terminus of...

متن کامل

TFIIS is required for the balanced expression of the genes encoding ribosomal components under transcriptional stress

Transcription factor IIS (TFIIS) stimulates RNA cleavage by RNA polymerase II by allowing backtracked enzymes to resume transcription elongation. Yeast cells do not require TFIIS for viability, unless they suffer severe transcriptional stress due to NTP-depleting drugs like 6-azauracil or mycophenolic acid. In order to broaden our knowledge on the role of TFIIS under transcriptional stress, we ...

متن کامل

Role of Mediator in regulating Pol II elongation and nucleosome displacement in Saccharomyces cerevisiae.

Mediator is a modular multisubunit complex that functions as a critical coregulator of RNA polymerase II (Pol II) transcription. While it is well accepted that Mediator plays important roles in the assembly and function of the preinitiation complex (PIC), less is known of its potential roles in regulating downstream steps of the transcription cycle. Here we use a combination of genetic and mole...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 38  شماره 

صفحات  -

تاریخ انتشار 2000